If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4w^2+24w+15=0
a = 4; b = 24; c = +15;
Δ = b2-4ac
Δ = 242-4·4·15
Δ = 336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{336}=\sqrt{16*21}=\sqrt{16}*\sqrt{21}=4\sqrt{21}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-4\sqrt{21}}{2*4}=\frac{-24-4\sqrt{21}}{8} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+4\sqrt{21}}{2*4}=\frac{-24+4\sqrt{21}}{8} $
| 5v+7v=0 | | -5x-42=-12 | | 2x=36+12 | | j-10÷2=-2 | | x-0,07x=465 | | |x+10|+7=7 | | -4(3x+3x)-5=19 | | 1=1+2n+8n | | 7x/3-2=5x/6+1 | | x+1-4x=1 | | x-0,07x=279 | | -5=-8n+3n | | p+12=29 | | -4=k+2/2 | | 24=4r+4r | | 3d+d-7=15/4 | | 11+27x=0 | | (3x+1)^2-(x+4)^2=0 | | -9-3x=-30 | | 7/4-3/2=b | | n+13=2 | | -4,5=-0,5(x-7,1) | | 4n-12n=7=4 | | 3r=2r-30 | | -4(z+12)=42 | | 27x+7=20 | | 6+10x=-2x-10 | | -5=1+x/2 | | -14=2-m/7 | | -4(z+1)=42 | | -38-8v=6(7-3v) | | 6(x-5)=x+30 |